TISSUE TYPING BY MEANS OF PCR AND CAPILLARY ELECTROPHORESIS: NEW ASPECTS, REALITY AND ISSUES
- Authors: Bavykin A.S.1
-
Affiliations:
- ООО «Ниармедик плюс»
- Issue: Vol 3, No 1 (2017)
- Pages: 48-58
- Section: PROFESSIONAL REVIEW
- URL: https://igor.eco-vector.com/index.php/jour/article/view/123
- DOI: https://doi.org/10.19048/2411-8729-2017-3-1-48-58
Cite item
Full Text
Abstract
«When the DNA is not enough» – an issue that becoming popular among forensic biologists [1]. The reasons for that are methods of tissue typing, that have limited accuracy and gradually becoming obsolete. The purpose of this review is to discuss the integration of new mRNA markers to the routine genetic forensic practice. The review discusses possibilities of utilizing the developed mRNA biomarkers for tissue typing as well as the approaches of combining gene expression analyses with standard sample workflow in forensic and criminal laboratories. Based on data obtained by the foreign researches, new mRNA markers are quite compatible with classical protocols, including PCR and capillary electrophoresis, increase the specificity of immunological methods and do not require rejection of their use. In the near future we can expect commercially developed tissue specific and multiplex assays at markets abroad. Although population diversity of genetic expression does not allow to create a universal multiplex panel, nevertheless the existing tissue mRNA panel can be enriched by the national features.
About the authors
A. S. Bavykin
ООО «Ниармедик плюс»
Author for correspondence.
Email: andrey.bavykin@nearmedic.ru
к.м.н., LLC «Nearmedic Plus› 125252, г. Москва Russian Federation
References
- Silvia A. Extracellular microRNAs in Forensic Sciences: potential biomarkers for body fluid identification. 2015, Dissertation. Abel Salazar Biomedical Sciences Institute, University of Porto. http://hdl.handle.net/10216/81679
- Misencik A., Laux D.L.: Validation Study of the Seratec HemDirect Hemoglobin Assay for the Forensic Identification of Human Blood. Midwestern Association of Forensic Science, Newsletter Spring. 2007, p: 18–26. http://www.seratec.com/docs/HemDirect_Validation_MAFS.pdf
- Mashkoor FC, Al-Asadi JN, Al-Naama LM. Serum level of prostate-specific antigen (PSA) in women with breast cancer. Cancer Epidemiol. 2013; 37 (5): 613–618. doi: 10.1016/j.canep.2013.06.009
- Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению России в 2015 году. ‒ М.: МНИОИ им. П.А. Герцена ‒филиал ФГБУ «НМИРЦ» Минздрава России, 2016. ‒ илл. ‒ 236 с. ISBN 978–5–85502–226–1, УДК 616–006.04–082 (470)«2015» ББК 55.6. С59. http://oncology-association.ru/docs/medstat/sostoyznie/2015.pdf
- Hochmeister MN., Budowle B., Rudin O., Gehrig C., Borer U., Thali M., Dirnhofer R. Evaluation of prostatespecific antigen (PSA) membrane test assays for the forensic identification of seminal fluid. (1999). J Forensic Sci 44: 1057–1060. doi: 10.1520/JFS12042J
- Sato I., Sagi M., Ishiwari A., Nishijima H., Ito E., et al. (2002) Use of the «SMITEST» PSA card to identify the presence of prostate-specific antigen in semen and male urine. Forensic. Sci. Int. 127: 71–74. doi: 10.1016/S0379–0738(02)00111–1
- Maier T., Güell M., Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009; 583 (24): 3966–3973. doi: 10.1016/j.febslet.2009.10.036
- Lindenbergh A., de Pagter M., Ramdayal G., Visser M., Zubakov D., Kayser M., Sijen T. A multiplex (m)RNAprofiling system for the forensic identification of body fluids and contact traces. Forensic Sci. Int. Genet. 2012; 6 (5): 565–577. doi: 10.1016/j.fsigen.2012.01.009
- De Waele J. Evaluation of factors affecting the identification of body fluids using mRNA in forensic case samples. Research Project. Institute of Environmental Science and Research Ltd, Auckland, New Zealand, 2011. http://dare.uva.nl/cgi/arno/show.cgi?fid=333666
- Lindenbergh A., Maaskant P., Sijen T. Implementation of RNA profiling in forensic casework. Forensic Sci Int Genet. 2013; 7 (1): 159–166. doi: 10.1016/j.fsigen.2012.09.003
- Xu Y., Xie J., Cao Y., Zhou H., Ping Y., Chen L., Gu L., Hu W., Bi G., Ge J., Chen X., Zhao Z. Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification. PLoS One. 2014; 9 (7): e100123. doi: 10.1371/journal.pone.0100123
- Hanson E., Haas C., Jucker R., Ballantyne J. Specific and sensitive mRNA biomarkers for the identification of skin in «touch DNA» evidence. Forensic Sci Int Genet. 2012; 6 (5):548– 58. doi: 10.1016/j.fsigen.2012.01.004
- Zubakov D., Kokshoorn M., Kloosterman A., Kayser M. New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med. 2009; 123 (1): 71–74. doi: 10.1007/s00414–008–0249-z
- Heinrich M., Matt K., Lutz-Bonengel S. Successful RNA extraction from various human postmortem tissue. Int. J. Legal Med. 121 (2007) 136–142. doi: 10.1007/s00414–006–0131–9
- Sirker M., Schneider PM., Gomes I. A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions. Int J Legal Med. 2016. p: 1–8. doi: 10.1007/s00414–016–1373–9
- Bauer M., Polzin S., Patzelt D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int. 2003;138 (1–3): 94–103. doi: 10.1016/j.forsciint.2003.09.008
- Lee J., Hever A., Willhite D., Zlotnik A., Hevezi P. Effects of RNA degradation on gene expression analysis of human post-mortem tissues. FASEB J. 19 (2005) 1356– 1358. doi: 10.1186/1471–2164–9–91
- Haas C., Hanson E., Anjos MJ., Ballantyne KN., Banemann R., Bhoelai B., Borges E., Carvalho M., Courts C., De Cock G., Drobnic K., Dötsch M., Fleming R., Franchi C., Gomes I., Hadzic G., Harbison SA., Harteveld J., Hjort B., Hollard C., Hoff-Olsen P., Hüls C., Keyser C., Maroñas O., McCallum N., Moore D., Morling N., Niederstätter H., Noël F., Parson W., Phillips C., Popielarz C., Roeder AD., Salvaderi L., Sauer E., Schneider PM., Shanthan G., Court DS., Turanská M., van Oorschot RA., Vennemann M., Vidaki A., Zatkalíková L., Ballantyne J. RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci Int Genet. 2014; 8 (1): 203–212. doi: 10.1016/j.fsigen.2013.09.009
- Lin MH., Albani PP., Fleming R. Degraded RNA transcript stable regions (StaRs) as targets for enhanced forensic RNA body fluid identification. Forensic Sci Int Genet. 2016; 20: 61–70. doi: 10.1016/j.fsigen.2015.09.012
- Bauer M., Kraus A., Patzelt D. Detection of epithelial cells in dried blood stains by reverse transcriptasepolymerase chain reaction. Journal of Forensic Sciences. 1999; 44 (6): 1232–1236. doi: 10.1520/JFS14593J
- Bauer M., Patzelt D. Evaluation of mRNA markers for the identification of menstrual blood. Journal of Forensic Sciences. 2002; 47(6): 1278–1282. doi: 10.1520/JFS15560J
- Bauer M., Patzelt D. Protamine mRNA as molecular marker for spermatozoa in semen stains. International Journal of Legal Medicine. 2003; 117 (3): 175–179. doi: 10.1007/s00414–002–0347–2
- Zubakov D., Kayser M. Forensic DNA Applications: An Interdisciplinary Perspective Forensic Tissue Identification with Nucleic Acids. CRC Press 2014 Print, Chapter 15. Forensic Tissue Identification with Nucleic Acids; p: 385–417. ISBN: 978–1–4665–8022–0. doi: 10.1201/b16512–19
- Van den Berge M., Bhoelai B., Harteveld J., Matai A., Sijen T. Advancing forensic RNA typing: On nontarget secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling. Forensic Sci. Int. Genet. 2016; 20: 119– 129. doi: 10.1016/j.fsigen.2015.10.011
- Harteveld J., Lindenbergh A., Sijen T. RNA cell typing and DNA profiling of mixed samples: can cell types and donors be associated? Sci. Justice. 2013; 53 (3): 261–269. doi: 10.1016/j.scijus.2013.02.001
- Afolabi O.A., Roeder A.D., Iyengar A., Hadi S. Reference gene study for forensic body fluid identification. FSI Genetics. 2015. Volume 5, p: e167–e169. doi: 10.1016/j.fsigss.2015.09.067
- Juusola J., Ballantyne J. Messenger RNA profiling a prototype method to supplant conventional methods for body fluid identification, Forensic Sci. Int. 135 (2003), p: 85–96. doi: 10.1016/j.fsigen.2008.11.003
- Juusola J., Ballantyne J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci. Int. 152 (2005), p: 1–12. doi: 10.1016/j.forsciint.2005.02.020
- Bauer M., Patzelt D. Evaluation of mRNA markers for the identification of menstrual blood. J. Forensic Sci. 2002 Nov; 47(6): 1278–1282. doi: 10.1016/j.fsigen.2011.09.007
- Visser M., Zubakov D., Ballantyne KN., Kayser M. mRNA-based skin identification for forensic applications. Int. J. Legal Med. 2011; 125 (2): 253–263. doi: 10.1007/s00414–010–0545–2
- Simon M., Montézin M., Guerrin M., Durieux JJ., Serre G. Characterization and purification of human corneodesmosin, an epidermal basic glycoprotein associated with corneocyte-specific modified desmosomes. J Biol Chem. 1997 12; 272 (50): 31770–3176. doi: 10.1074/jbc.272.50.31770
- Jonca N., Guerrin M., Hadjiolova K., Caubet C., Gallinaro H., Simon M., Serre G. Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J Biol Chem. 2002 Feb 5; 277 (7): 5024–5029. doi: 10.1074/jbc.M108438200
- Reis A., Küster W., Eckardt R., Sperling K. Mapping of a gene for epidermolytic palmoplantar keratoderma to the region of the acidic keratin gene cluster at 17q12-q21. Hum Genet. 1992; 90 (1–2): 113–116. doi: 10.1007/BF00210752
- Reis A., Hennies HC., Langbein L., Digweed M., Mischke D., Drechsler M., Schröck E, Royer-Pokora B., Franke WW., Sperling K., Wolfang Küster. Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK). Nat Genet. 1994; 6 (2): 174–179. doi: 10.1038/ng0294–174
- Passali D., Sarafoleanu C., Manea C., Loglisci M., Passali FM., Cambi J., Iosif C., Panaitescu E., Bellussi LM. PLUNC proteins positivity in patients with chronic rhinosinusitis: a case- control study. ScientificWorldJournal. 2014; 2014: p: 1–5. doi: 10.1155/2014/853583
- Sabatini L.M., Carlock L.R., Johnson G.W., Azen E.A. cDNA cloning and chromosomal localization (4q11– 13) of a gene for statherin, a regulator of calcium in saliva, Am. J. Hum. Genet. 41 (1987) 1048–1060. PMID: 3502720, PMCID: PMC1684366
- Oudhoff MJ., Bolscher JG., Nazmi K., Kalay H., van ‘t Hof W., Amerongen AV., Veerman EC. Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB J. 2008; 22 (11): 3805–3812. doi: 10.1096/fj.08–112003
- Zhang W., Zeng Z., Wei F., Chen P., Schmitt DC., Fan S., Guo X., Liang F., Shi L., Liu Z., Zhang Z., Xiang B., Zhou M., Huang D., Tang K., Li X., Xiong W., Tan M., Li G., Li X. SPLUNC1 is associated with nasopharyngeal carcinoma prognosis and plays an important role in all- trans-retinoic acidinduced growth inhibition and differentiation in nasopharyngeal cancer cells. FEBS J. 2014; 281(21): 4815–4829. doi: 10.1111/febs.13020
- Danaher P., White RL., Hanson EK., Ballantyne J. Facile semi-automated forensic body fluid identification by multiplex solution hybridization of NanoString® barcode probes to specific mRNA targets. Forensic Sci Int Genet. 2015;14:18–30. doi: 10.1016/j.fsigen.2014.09.005
- Fleming RI., Harbison S. The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Sci. Int. Genet. 2010; 4(4): 244– 256. doi: 10.1016/j.fsigen.2009.10.006
- Zubakov D., Hanekamp E., Kokshoorn M., van IJcken W., Kayser M. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med. 2008; 122:135–142. doi: 10.1007/s00414–007–0182–6
- Fang R., Manohar C.F., Shulse C., Brevnov M., Wong A., Petrauskene O.V., Brzoska P., Furtado M.R. Real-time PCR assays for the detection of tissue and body fluid specific mRNAs. Progress in Forensic Genetics 11 – Proceedings of the 21st International ISFG Congress, Portugal, September 2005. doi: 10.1007/s00414–010–0545–2
- Wykes S.M., Krawetz S.A. The structural organization of sperm chromatin, J. Biol. Chem. 278 (2003) 29471–29477. doi: 10.1074/jbc.M304545200
- Zubakov D., Kokmeijer I., Ralf A., Rajagopalan N., Calandro L., Wootton S., Langit R., Chang C., Lagace R., Kayser M. Towards simultaneous individual and tissue identification: A proof-of-principle study on parallel sequencing of STRs, amelogenin, and mRNAs with the Ion Torrent PGM. Forensic Sci Int Genet. 2015; 17:122– 128. doi: 10.1016/j.fsigen.2015.04.002
- Gaide Chevronnay HP., Selvais C., Emonard H., Galant C., Marbaix E., Henriet P. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta. 2012;1824(1):146–156. doi: 10.1016/j.bbapap.2011.09.003
- Vialou V., Feng J., Robison AJ., Nestler EJ. Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol. 2013; 53: 59–87. doi: 10.1146/annurev- pharmtox‑010611–134540
- Davidson B., Stavnes HT., Hellesylt E., Hager T., Zeppa P., Pinamonti M., Wohlschlaeger J. MMP‑7 is a highly specific negative marker for benign and malignant mesothelial cells in serous effusions. Hum Pathol. 2016; 47 (1): 104–108. doi: 10.1016/j.humpath.2015.08.020
- Edge MD., Rosenberg NA. Implications of the apportionment of human genetic diversity for the apportionment of human phenotypic diversity. Stud Hist. Philos. Biol. Biomed. Sci. 2015; 52: 32–45. doi: 10.1016/j.shpsc.2014.12.005
- Storey JD., Madeoy J., Strout JL., Wurfel M., Ronald J., Akey JM. Gene-expression variation within and among human populations. Am. J. Hum. Genet. 2007; 80 (3): 502–9. doi: 10.1086/512017
- Silva SS., Lopes C., Teixeira AL., Carneiro de Sousa MJ., Medeiros R. Forensic miRNA: potential biomarker for body fluids? Forensic Sci. Int. Genet. 2015;14: 1–10. doi: 10.1016/j.fsigen.2014.09.002